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The motion of two cavitation bubbles near a rigid boundary is observed experimen- 
tally using a high-speed camera and compared against numerical solutions obtained 
using a boundary integral method. The comparisons are favourable with regard 
to both bubble shape history and centroid motion. The bubbles show a range of 
responses depending on the experimental configuration. Elongated bubbles, jets di- 
rected towards or away from the rigid boundary and bubble splitting phenomena are 
all observed and predicted for the given parameters. It is clear that nearby bubbles 
are equally as important as the presence of a rigid boundary in determining the 
behaviour of bubbles. 

1. Introduction 
In most practical situations bubbles do not occur in isolation (e.g. cavitation, 

boiling, chemical reactors) but exist in large numbers. Clearly it is important to 
understand the mechanics of bubble interaction as well as their response to the 
ambient flow field and nearby boundaries. The effects of nonlinear interactions on 
the motion of both bubble and a nearby free surface have been studied in several 
previous papers (Blake, Taib & Doherty 1986, 1987). The behaviour of non-spherical 
bubbles near boundaries yields a range of bubble shapes, in some cases leading to 
the fragmentation of bubbles in the very late stages of collapse (see e.g. Plesset & 
Chapman 1972; Voinov & Voinov 1977; Robinson, Blake & Kucera 1993). In this 
paper we present an experimental and theoretical study of the interaction of two 
bubbles with a rigid boundary in an axisymmetric configuration. The study reveals 
the wide range of responses that may be found when bubble interactions are strong, 
clearly indicating the significance of including the dynamics of bubble interaction in 
any large-scale model of two-phase flow. 

In the next section a brief summary of the modified experimental apparatus is 
presented together with a selection of different experimental observations that are 
analysed in greater detail in a later section when compared to the numerical model 
of 93. A modified boundary integral method is developed that allows the technique 
to be used for multiple bubble systems. The theory incorporates 'bubble splitting' 
phenomena to yield additional bubbles provided the flow domain remains simply 
connected (i.e. theory does not admit toroidal bubbles with circulation). 
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Laser 
Beam 

FIGURE 1. A schematic illustration of the experimental apparatus 

In 94 comparisons between experiment and theory are presented for the case of 
two axisymmetric bubbles. The accuracy of an earlier theory, reported in Vogel, 
Lauterborn & Timm (1989), is again confirmed by the studies reported in this 
paper. Section 5 compares theory and experiment, showing more clearly the effects 
that bubble interactions may have on each other’s behaviour. It is clear that the 
interaction between bubbles is dependent on inter-bubble distance and is of equal 
importance as the presence of nearby boundaries. 

2. Experiment 
2.1. Apparatus and techniques 

Bubbles were produced by focusing a ruby laser, with pulse width of approximately 
20 ns and maximum power 60 MW, into water at room temperature (Tomita & 
Shima 1990). About 4 mJ of light energy was needed to produce a bubble with radius 
1 mm. A schematic diagram of the test section is illustrated in figure 1. The laser 
beam was divided with a beam splitter: one beam entered a bubble chamber from 
the left and the other from below through two mirrors. Each beam was enlarged 
to twice its original size and cut with an iris as well as a small, circular stop after 
collimating. Finally they were both focused with two aspheric lenses, each with focal 
length of 12 mm in air, into tap water to produce two bubbles simultaneously. A 
single bubble may be obtained by cutting one branch of the beams. The position of 
bubble production is adjustable by controlling two lens arrays, which enable us to 
obtain two bubbles at arbitrary points on a focal plane. A transparent acrylic plate 
was used as a solid wall to prevent unnecessary bubbles forming due to the heat 
absorbed by a laser beam while passing through the wall. The wall was positioned 
from the upper part or side of the chamber for each experimental situation. 
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FIGURE 2. A schematic illustration of the axisymmetric geometry used in consideration of the 
motion of two cavitation bubbles near a rigid boundary. 

The motion of bubbles was observed using an Imacon high-speed camera (John 
Hadland 790) with framing rate of 100000 framess-’ and exposure time of 
2 psframe-’. The location of the camera would be depicted above the plane of 
figure 1. A diffuser was placed behind the focal plane to visualize the bubble interiors. 
The timing of the photography was adjusted with a delay circuit. 

2.2. Observations 
In the experimental observations reported in this paper we restrict the study to ax- 
isymmetric configurations of (i) a cavitation bubble near a horizontal rigid boundary, 
and two cavitation bubbles in (ii) an effectively infinite fluid and (iii) directly above 
one another near a horizontal rigid boundary. 

In describing the geometrical arrangement of the bubbles near a rigid boundary 
(see figure 2), we denote the larger of the two bubbles as ‘bubble 1’ and smaller of 
the two bubbles as ‘bubble 2’. We define the lengthscale R;, by 

R; =max -V;(t) , 
[ 4 l  1: 

where ( i  = 1,2) is the equivalent radius of ‘bubble i’ at maximum volume. If bi 
( i  = 1,2) is the distance above the boundary where the laser beams are focused then 
we define the dimensionless location and radius parameters as 

with 0 < R2 d 1. The dimensionless separation distance of the two bubbles is denoted 
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Y1 Y2 7 R2 
1.30 - 
0.84 - 

- 3.34 0.91 
- 2.49 0.47 

0.99 3.60 2.61 0.94 
4.38 1.73 2.65 0.96 
6.23 3.19 3.04 0.98 
2.17 0.47 1.70 0.57 
2.27 0.67 1.60 0.49 
3.59 1.39 2.20 0.61 

TABLE 1. Dimensionless form of the experimentally measured data used in the calculations 

FIGURE 3. High-speed photographs of a single bubble near a rigid boundary. 

by j j  = Iy2 - yl I. Details of the experimentally measured parameters and the data used 
in the numerical calculations are recorded in table 1. In this study it is also assumed 
that both bubbles are generated at the same instant. 

Figure 3 shows photographs of two examples of a single bubble generated at 
different distances from a plane rigid wall. This is the situation described in many 
previous studies (Plesset & Chapman 1971; Lauterborn & Bolle 1975; Tomita & 
Shima 1986; Blake et al. 1986; Vogel et al. 1989). We can see a familiar process of the 
bubble motion, covering growth and collapse phases. Non-spherical flow is induced 
when a bubble oscillates near a rigid boundary, and subsequently the bubble deforms. 
Eventually a high-speed liquid microjet, directed towards the wall, is formed in the 
latter stage of the bubble collapse. 

The simplest example of the interaction of two bubbles is the case without a solid 
wall. High-speed photographs covering the whole period of bubble motion are shown 
in figure 4 for (a) similar-sized and (b) different-sized bubbles. The distance between 
bubbles and individual bubble size, which is proportional to the period of the bubble 
motion, are found to be important factors affecting their mutual interaction. The 
translational motion is rapidly induced when each bubble becomes small in size. A 
counter-jet is visible in the rebound process of a smaller bubble in both figure 4 ( 4  
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FIGURE 4. High-speed photographs of two bubbles in an effectively infinite fluid with 
(a) similar-sized bubbles and (b) different-sized bubbles. 

after the 17th frame, and figure 4(b),  after the 14th frame. Observations reported here 
are in agreement with earlier studies by Timm & Hammitt (1971) and Lauterborn & 
Hentschel (1985). The earlier work of Timm & Hammitt showed evidence of counter- 
jet development in equi-sized bubbles, although in their study it appears at the second 
rebound. It is not clear if the counter-jet in the smaller bubble is associated with the 
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F~GURE 5. High-speed photographs showing three examples of two approximately equal-sized 
bubbles near a rigid boundary. 

shock wave generated by the larger bubble on collapse or due to the coalescence of 
the toroidal bubble on rebound. 

Series of photographs of the axisymmetrical motion of two bubbles, which are 
generated in a column perpendicular to a wall, are shown in figures 5 and 6. We 
found that there are various features of bubble motion that depend on parameters 
such as bubble size, distance between bubbles and distance from each bubble to a 
wall. 

In figure 5 the behaviour of two approximately equal-sized bubbles (i.e. R2 = 1) 
is shown for various values of the parameters y1 and y2.  Figures 5(a) and 5(b) show 
elongations of the bubble nearer to the wall during the collapse phase. Figure 5(c) 
records the case where both bubbles are located further from the boundary, increasing 
the importance of the mutual bubble interaction. 

A very interesting and important phenomenon is observable in figure 6 for the 
case where the bubble nearer to a wall is smaller than that further from the wall. 
Figures 6(a) and 6(b) record the response where the smaller bubble is again elongated 
during its early collapse phase. In the latter case necking of the elongated bubble 
is clearly visible which finally separates the upper and lower sections of the bubble, 
forming two smaller bubbles. In the next section the boundary integral method is 
extended to allow consideration of multi-bubble models and to provide further insight 
into bubble-boundary interactions and the observed ‘bubble splitting’ phenomena. 
Figure 6(c) records the case where both bubbles are initially located further from 
the boundary than the other examples in this figure. However the elongation of the 
smaller bubble indicates that it is subject to strong interactions with both the rigid 
boundary and the larger bubble above it, although ultimately it migrates towards the 
larger bubble. 
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FIGURE 6. High-speed photographs showing three examples of two different-sized bubbles near a 
rigid boundary. 

3. Theory 
The fluid volume s2 surrounding the bubbles is assumed inviscid and incompressible, 

and motion irrotational, leading to the fluid velocity u being expressed as the gradient 
of a potential 4, i.e. 

with 4 satisfying Laplace's equation in the fluid; 
u = v4, (3) 

v24 = 0. (4) 
During the process of inception, each bubble is assumed to originate from a small 

gas nucleus and subsequently grow to many times its initial volume. If this growth 
is so rapid that mass-diffusion effects are negligible, the gas content of each bubble 
plays no appreciable role in the dynamics until late in the final collapse phase. We 
therefore assume that bubbles are composed predominantly of vapour. 

The ambient fluid pressure pm is high compared to surface tension effects, while 
the pressure at the bubble interfaces is assumed constant and equal to the saturation 
vapour pressure p". Due to the small lifetime and volume associated with the growth 
and collapse of a cavitation bubble the effects of buoyancy can also be neglected. 

With the above assumptions, the dynamic boundary condition on the bubble 
surfaces can be written 

where Ap is given by 
AP = P m  - P". (6) 

The previously defined maximum bubble radius R; allows the introduction of the 
following dimensionless variables given in terms of the characteristic collapse velocity 
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(APlP)t by 

Dropping bars, (6) yields the rate of change of potential at the surfaces, 

Fluid particles initially on the bubble surfaces Si ( i  = 1,2) remain there, yielding 
the kinematic condition 

dP 
- dt = V4’ p E si. (9) 

Application of Green’s theorem in the three-dimensional domain leads to the 
boundary integral formulation given by 

with 

When considering motion in an infinite fluid G is given by the free-space Green’s 
function 

(1  1) 
1 

G@,q) = 4nlp-qql’ 

and when considering motion in the neigbourhood of a rigid boundary, we choose 

where q’ is the image of q reflected about the boundary thus immediately satisfying 
the no-flow condition through the rigid boundary. 

Initially we assume that the action of the focused laser is to yield a vapour 
bubble which expands spherically, unperturbed by the presence of other boundaries, 
to some small radius hi at time to as shown in figure 2. Initial trials using an 
appropriate Rayleigh bubble potential to produce bubbles of equivalent radii R, 
proved unsatisfactory for the case R2 c 1, due to the interaction which takes place 
with the larger bubble during the growth phase. For the case RZ = 0.5 initially 
prescribed with 7 = 2.0, the measured value of R2 is underestimated by approximately 
7% whereas R1 is overestimated by approximately 3%. This effect is further increased 
when bubble 2 is placed adjacent to a rigid boundary, further impeding its radial 
motion. To calculate the required initial potential 4oi to a high degree of accuracy, 
a Newton-Raphson scheme is employed to match the required values of Ri at each 
bubble’s respective maximum volume. Denoting J as the Jacobian matrix, the iterative 
scheme 

$2’ = 4; - [J-’1 ( R  - Rk) , k = 0,1,. . . (13) 
is used, where the boundary integral method is utilized to evaluate the maximum 
equivalent radii &k at each iteration. As an initial approximation 4: we choose the 
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FIGURE 7. Numerically calculated bubble shapes and centroid positions of a single bubble near a 
rigid boundary for (a) y = 1.30 and (b)  y = 0.84, with comparisons to the experimental results of 
figure 3 (circles). 

Rayleigh potentials 

where to is evaluated in terms of an incomplete Beta funcion 

and 

The procedure is iterated until the maximum error in &! is less than 0.5%, which 
is typically satisfied by k = 3. With the initial potentials prescribed, the bubbles 
subsequently expand to their maximum volumes with equivalent radii R, at times 
t = Ti given approximately by the half-period of a Rayleigh bubble, 

h i  = RolRi- (16) 

Ti = 3 (i)' B (z, i) Ri w 0.915Ri. 

To solve (10) we employ a collocation method and represent the bubble surfaces 
by a number of Lagrangian particles. To overcome the non-smooth nature of the 
piecewise linear interpolations, cubic splines are used to interpolate both 4 and Si 
between node points. Further details of the numerical implementation may be found 
in Kucera (1992) and Best & Kucera (1992) 

With 6 and Si known at time t, (10) can be solved as a Fredholm integral equation 
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of the first kind for the normal fluid velocity a$ /& on the bubble surfaces. With the 
prior knowledge of $ on S,, a$ /as  is also calculated leading to the fluid velocity u at 
the bubble surfaces. Equations (8) and (9) are integrated employing a second-order 
Runge-Kutta scheme to obtain $ and S, at time t + 6t .  The above procedure is 
applied iteratively thus yielding the time evolution of the bubble configuration. Nodal 
redistribution and smoothing is applied periodically. Smoothing of $ and Si is carried 
out using quadratic interpolation to alternate between a set of N ,  + 1 node points 
and a set of Ni node points situated midway along individual arclengths. 

In the next section comparisons are made between this theory and the experimental 
observations reported in $2. 

J .  R. Blake, P. B. Robinson, A. Shima and Y: Tomita 

4. Comparison between theory and experiment 
In figure 7 comparison between the predictions of the numerical model and the 

measured bubble shape and centroid motion of figure 3 are shown. It is readily seen 
that both results are in good agreement except over a short period in the very final 
stage of collapse when the shape is deforming extremely rapidly and experimental 
data are less accurate. Due to the zero flux condition on the rigid boundary, the 
bubble centroid migrates marginally away from the boundary during the growth 
phase. However during the collapse phase the bubble centroid moves increasingly 
rapidly towards the rigid boundary as a result of momentum conservation. Ultimately 
this leads to the formation of the high-speed liquid jet that is directed towards the 
boundary. 

In figure 8 comparisons of both bubble shape and centroid motion are made for the 
two-bubble example in an infinite fluid that was recorded in figure 4. In figures 4(a) 
and 8(a), the bubbles are of similar size (R2 = 0.91) with the upper, smaller bubble 
(bubble 2) collapsing first, generating a broad jet directed towards the lower bubble. 
This feature is not evident in figure 4(a) but can be inferred from the penetrating jet 
that can be observed in the rebounding bubble of frames 17-18. These calculations 
are not capable of predicting the counter-jet clearly evident in the experiments; as 
indicated earlier, this jet is most likely associated with the shock wave generated at 
collapse of the larger bubble or reconnection of the expanding toroidal bubble. There 
is a strong mutual attraction of both bubbles in this case as is clearly evident from 
the centroid migration. In figures 4(b) and 8(b) the uppermost bubble (bubble 2 ) is 
much smaller (R2 = 0.47), again collapsing first with a fine jet directed towards the 
lower bubble. Experimentally this is observed around frame 14 where the penetrating 
jet is again evident. The bubbles are weakly attracted towards each other, the smaller 
one more so during the latter stages of collapse, although the larger bubble is yet to 
collapse. 

In figure 9 comparisons of both bubble shape and centroid motion are made for 
case of two approximately equal-sized bubbles near a rigid boundary with R2 2 0.94 
as recorded in figure 5. The bubble shapes illustrated in figure 9(a) would indicate 
that the lower bubble (bubble l ) ,  which is of similar size to bubble 2, perceives the 
upper bubble as an almost identical one; thus effectively acting as an ‘image system’ 
for a rigid boundary. This being the case, the high-speed jet is directed towards 
the lower bubble and, as a consequence of the geometry, the rigid boundary. The 
lower bubble grows almost spherically but during collapse it behaves as if it were 
located between two parallel rigid boundaries and as a consequence of the flow, 
collapses from the side, yielding the elongated bubble shape so clearly evident in both 
experiment (frames 12-15) and in the theoretical calculations. If the calculations or 
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FIGURE 8. Numerically calculated bubble shapes and centroid positions of two bubbles in an 
infinite fluid corresponding to figure 4, with (a) 7 = 3.34, R2 = 0.91 and (b) 7 = 2.49, R2 = 0.47. 

observations were to proceed further we would observe a strong sideways ‘annular’ 
jet that would ultimately split the lower bubble in two. The other significant factor 
is that the lifetime of the lower bubble adjacent to the wall is longer than that of 
the upper bubble due the reduced in-flow from above and below. This may have 
important consequences in terms of a ‘cascade’ of high pressures developing near a 
rigid boundary as bubbles finally collapse. 

Figures 5(b) and 9(b) show an initial configuration of the system located slightly 
further from the boundary. The lower bubble (bubble 2) again elongates but this 
time retains much of its vertical symmetry due to the increased mobility of fluid from 
below. During its collapse phase this bubble migrates very slightly away from the 
rigid boundary. In this case however, the experimental record is not as long as that 
obtained from the numerical simulation which records the high-speed jet developed 
by the upper bubble. 



718 

(4 

6 

5 

4 

3 

2 

1 

0 

Z 

3 -  

2 -  1 

J .  R.  Blake. P .  B. Robinson, A.  Shima and Y; Tomita 

@ 

t<T1 

@ 
-1 @, 0 1 

r 

Z 

0; 
-1 0 1 

r 

6 

5 

4 

3 

2 

1 

0 

z 

-1 0 1 
r 

5 

4 

3 

2 

1 

Z 

I 

-1 0 1 
r 

OL------ 
-1 0 1 

r 

4 

3 

z 

2 

-1 0 1 
r 

3 2.50 
0 3 2.25 

1.75 
1.50 
1.25 

1 .oo 
0.75 

8 2.00 

0.0 0.5 1.0 1.5 2.0 
Time 

4.50 

4.25 

4.00 

3.75 

3.50 

g 3.25 

8 3.00 
U 2.75 

2 
c 

::: l _ , ~ , n n ~ , ~ a o , o , o l _ l  

2.00 

1.75 

0.0 0.5 1.0 1.5 2.0 
Time 

6.25 
6.00 
5.75 
5.50 
5.25 3 5.00 
4.75 

8 4.50 
4.25 
4.00 
3.75 
3.50 
3.25 

I 

Time 
FIGURE 9. Numerically calculated bubble shapes and centroid positions of two approximately 
equal-sized bubbles near a rigid boundary corresponding to figure 5, with (a) y1 = 0.99, y2 = 3.60, 
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FIGURE 10. Numerically calculated bubble shapes and centroid positions of two different-sized 
bubbles near a rigid boundary corresponding to figure 6, with (a) y1 = 2.17, y2 = 0.47, R2 = 0.57, 
(b) y1 = 2.27, y2 = 0.67, R2 = 0.49, and (c) y1 = 3.59, y2 = 1.39, R2 = 0.61. 

In figures 5(c) and 9(c), two almost equal-sized bubbles are observed at some 
distance from the rigid boundary, at least in the sense that the strongest fluid 
mechanical interaction is with each other rather than the rigid boundary. Due to 
the increased spacing between the bubbles and boundary, the lower bubble (bubble 
2) retains a more spherical shape with both bubbles collapsing on a comparable 
timescale. Both the bubble shape and centroid motions record movement towards 
each other, with high-speed liquid jets following this attraction. Clearly they are 
behaving as images for each other or, in other words, effectively as if there were a 
rigid boundary between them. 

In figure 10 comparisons of both bubble shape and centroid motion are made 
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for cases where bubble 2 is located adjacent to the boundary with R2 < 0.61 as 
recorded in figure 6. In figures 6(a) and 10(a), the lower bubble is initiated very 
close to the boundary. During the growth phase, the centroid position of the bubble 
is shown to migrate marginally towards the boundary due to the strong outward 
radial flow associated with the upper bubble. At maximum volume the lower bubble 
has expanded to take on a flattened profile located on the boundary. During the 
collapse phase, as in figure 9(a) the fluid flow near the lower bubble directed parallel 
to the boundary is far less restricted than that normal to the boundary. This effect 
produces a reduced inward motion of fluid at the lower section of the upper bubble 
with the formation of a pronounced protrusion, and the production of an annular 
jet around the surface of the lower bubble. Due to the lower inertia associated with 
fluid motion between the bubbles, as compared to the rigid boundary, the fluid flow 
towards the upper part of the lower bubble is greater than that towards its lower 
part. The formation of an annular jet is therefore stronger at the upper section of 
the bubble, causing this region to collapse faster, resulting in accelerated centroid 
migration towards the boundary. At time t = 1.76, pinch-off is observed to occur, 
and the lower bubble splits in two. Had the calculation been allowed to continue, two 
high-speed axial jets emanating from the high-curvature regions of closure would be 
formed, the lower of which would strike the boundary with an ultra high velocity. 

In figures 6(b) and 10(b), the lower bubble is initiated further from the boundary, 
expanding more spherically towards maximum volume. During the majority of its 
lifetime, the bubble migrates towards the boundary under the strong influence of the 
radial motion of the upper bubble. During the collapse phase, the lower bubble is 
positioned approximately half way between the boundary and the lower surface of 
the upper bubble. In this case the flow field in the neighbourhood of the lower bubble 
is more symmetrical and the formation of an annular jet occurs around the equator. 
The centroid calculations show that the lower bubble again migrates towards the 
boundary which, due to the symmetrical collapse, occurs at approximately constant 
velocity. At closure of the neck, pinch-off occurs forming two small, nearly equal-sized 
bubbles. 

In figures 6(c) and lO(c), the two bubbles are initiated further from the rigid 
boundary. In this case, much like the last, the smaller bubble retains much of its 
symmetry during expansion and early collapse phases. Upon collapse, the lower 
bubble again takes on an elongated form due to an increased mobility of fluid from 
the sides. In this instance however the distance between the two bubbles is far 
less than that between the boundary and the lower bubble. Therefore, with the 
increased importance of the two-bubble interaction, and the increased mobility of 
fluid from beneath the lower bubble, collapse occurs from below. The lower bubble 
therefore migrates towards the upper bubble, collapsing at its lower end yielding a 
‘cone-shaped’ bubble. At this high-curvature region the lower bubble subsequently 
produces a high-speed axial jet penetrating the bubble from bottom to top. 

J .  R. Blake, P. B. Robinson, A. Shima and X Tomita 

5 .  Conclusions 
It is clear from these observations that many types of behaviour can occur when 

the competing effects of a bubble interacting with both another bubble and a rigid 
boundary occur. Even within the relatively simple geometry used in the experiments 
and theory of this paper, a wide range of migratory behaviour and jet formation 
is found. Clearly, when bubbles are close together their mutual interactions can 
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dominate over the presence of a rigid boundary. These factors can influence the 
direction of migration and lifetime of the bubbles. 

The numerical technique outlined in $3 can easily be utilized to calculate the 
bubble interaction for a finite number of bubbles near a rigid boundary. Although 
the axisymmetric arrangement is only likely to occur in very special circumstances, it 
does highlight the importance of the interaction with the nearest bubble or boundary. 

The authors wish to acknowledge with thanks the contributions of Dr A. Kucera, 
Dr K. Sat0 and Mr N. Miura. 
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